Архив записей
Наш опрос
Оцените мой сайт
Всего ответов: 70
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0

Лекция

Световая и темновая фазы фотосинтеза

Световая фаза

Приложение 1

1. а) Свет, попадая на хлорофилл, сообщает ему достаточно энергии для того, чтобы от молекулы мог оторваться один электрон; б) электроны захватываются белками-переносчиками, встроенными, наряду с хлорофиллом, в мембраны тилакоида и выносятся на сторону мембраны, обращённую в строму; в) в строме всегда есть вещество, являющееся переносчиком водорода, по своей природе оно является динуклеотидом и называется сокращённо НАДФ+ – окисленная форма (никотин–амид–аденин–динуклеотид–фосфат). Это соединение захватывает возбуждённые светом e и протоны, которые всегда есть в строме, и восстанавливается, превращаясь в НАДФ·H2.

2. Молекулы воды разлагаются под действием света (фотолиз воды): образуются электроны, Н+ и O2. Электроны замещают e, утраченные хлорофиллом на стадии 1. Протоны пополняют протонный резервуар, который будет использоваться на стадии 3. Кислород выходит за пределы клетки в атмосферу.

3. Протоны, накапливаясь внутри тилакоида, образуют положительно заряженное электрическое поле. Со стороны, обращённой в строму, мембрана заряжена отрицательно. Постепенно разность потенциалов по обе стороны мембраны возрастает и, когда она достигает критической величины (? 200 милливольт), открывается пора в ферменте, встроенном в мембрану тилакоида (фермент называется АТФ-синтетаза). Протоны устремляются по протонному каналу в ферменте наружу – в строму. На выходе из протонного канала создаётся высокий уровень энергии, который идёт на синтез АТФ (АДФ + Фн > АТФ). Образовавшиеся молекулы АТФ переходят в строму, где участвуют в реакциях образования углеводов.

Итак, результат световой фазы – образование молекул, богатых энергией АТФ и НАДФ·H2, и побочного продукта – O2?.

Темновая фаза

   Эта фаза проходит в строме хлоропласта, куда поступает CO2 из воздуха, а также продукты световой фазы АТФ и НАДФ·H2. Здесь эти соединения используются в серии реакций, “фиксирующих” CO2 в форме углеводов. Проследим по схеме: CO2 присоединяется к пятиуглеродному сахару (рибулёзодифосфату), который есть в строме. Образующаяся при этом шестиуглеродная молекула нестабильна и сразу расщепляется на две трёхуглеродные молекулы, каждая из которых присоединяет фосфатную группу от АТФ. Обогащённая энергией молекула становится способной присоединить водород от переносчика НАДФ·H2. На пятом этапе судьба трёхуглеродных молекул может быть различной: одни из них соединяются друг с другом и образуют шестиуглеродные молекулы, например, глюкозы, а те дальше объединяются в сахарозу, крахмал, целлюлозу и другие вещества. Другие трёхуглеродные молекулы используются для синтеза аминокислот, присоединяя азотсодержащие группы. Наконец, третьи вовлекаются в длинный ряд реакций, основной результат которых сводится к превращению пяти трёхуглеродных молекул в три пятиуглеродные молекулы рибулёзодифосфата. Он снова присоединяет углекислый газ, увеличивая общее количество фиксированного углерода в растении. Иными словами, процесс представляет собой цикл Кальвина (Нобелевская премия 1961 г).

   Для создания одной молекулы глюкозы цикл должен повториться шесть раз: при этом всякий раз к запасу фиксированного углерода в растении прибавляется по одному атому углерода из CO2.АДФ, Фн и НАДФ+ из цикла Кальвина возвращаются на поверхность мембран и снова превращаются в АТФ и НАДФ·H2.

   В дневное время, пока светит солнце, в хлоропластах не прекращается активное движение этих молекул: они снуют туда и сюда, как челноки, соединяя два независимых ряда реакций. Этих молекул в хлоропластах немного, поэтому АТФ и НАДФ·H2, образовавшиеся днём, на свету, после захода солнца быстро расходуются в реакциях фиксации углерода. Затем фотосинтез прекращается до рассвета. С восходом солнца вновь начинается синтез АТФ и НАДФ·H2, а вскоре возобновляется и фиксация углерода.

   Итак, в результате фотосинтеза происходит превращение световой энергии в энергию химических связей в молекулах органических веществ. А растения, таким образом, являются посредниками между Космосом и жизнью на Земле”.

   Несмотря на пространственную и временную локализацию световой и темновой фаз, они взаимосвязаны между собой. На схеме укажите вещества, посредством которых они связаны.

http://festival.1september.ru/articles/605920/img3.jpg

  В результате фотосинтеза происходит превращение световой энергии в энергию химических связей в молекулах органических веществ. А растения, таким образом, являются посредниками между Космосом и жизнью на Земле”.

   Тимирязев К.А. утверждал, что фотосинтез играет космическую роль на планете Земля.,

.

Космическая роль фотосинтеза:

1) выделение кислорода для дыхания живых организмов,

2) поглощение углекислого газа, поддержание постоянного газового состава,

3) образование органического вещества - пища гетеротрофов,

4) перекачка солнечной энергии из космоса на Землю (энергетические ресурсы – нефть, уголь, торф),

5) образование озонового слоя, защитного экрана от УФЛ.

Учитель: Таким образом, мы можем сделать вывод, что без фотосинтеза живые организмы на земле существовать не могут, это величайший процесс.

Учитель: Подведем итоги урока, для этого вернемся к цели. Нам необходимо было узнать где? как? и для чего проходит фотосинтез? Узнали? (озвучить по слайду), цель выполнена.

 

Фотосинтез.

Где?

Как?

Для чего

лист,

2 фазы:

органическое

хлоропласт,

световая,

вещество,

хлорофилл,

темновая

энергия

свет, СО2, вода